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SUMMARY 

Many problems of applied oceanography and environmental science demand the solution of the momentum, 
mass and energy equations on physical domains having curving coastlines. Finite-difference calculations 
representing the boundary as a step function may give inaccurate results near the coastline where simulation 
results are of greatest interest for numerous applications. This suggests the use of methods which are 
capable of handling the problem of boundary curvature. 

This paper presents computational results for the shallow water equations on a circular ring of constant 
depth, employing the concept of boundary fitted grids (BFG) for an accurate representation of the boundary. 
All calculations are performed on a rectangle in the transformed plane using a mesh with square grid 
spacing. Comparisons of the simulations of transient normal mode oscillations and analytic solutions 
are shown, demonstrating that this technique yields accurate results in situations (provided that there is a 
reasonable choice of grid) involving a curved boundary. The software developed allows application to any 
two-dimensional area, regardless of the complexity of the geometry. 

Simulation runs were made with two co-ordinate systems. For the first system, the grid point distribution 
was obtained from polar co-ordinates. For the second one, grid point positions were calculated numerically, 
solving Poisson's equation. It was found that small variations in the metric coefficients d o  not deteriorate 
the accuracy of the simulation results. 

Moreover, comparisons of surface elevation and velocity components a t  grid points near the inner and 
outer radii obtained from an x-y Cartesian grid model with the BFG simulation were made. The former 
model produced inacccuracies a t  grid points near boundaries, and, owing to  the large number of mesh points 
used to yield the necessary fine resolution, the computation time was found to  be a factor of three higher. 

KEY %ORDS Shallow Water Equations Boundary Fitted Grids Comparison of Boundary Fitted Grid Model 
with . ~ - y  Cartesian Grid Model Annular Ring Solutions 

INTRODUCTION 

Many problems of mathematical physics demand the solution of partial differential equations. 
In most cases analytic solutions cannot be obtained; thus one has to resort to numerical solutions. 
Very often the numerical solution of a problem is aggravated not only by complex physical 
processes but also by the irregularity of the solution domain. The present paper is concerned 
with solutions of the shallow water equations (SWE) which describe the free surface and velocity 
field of a liquid subjected to the gravity field of the earth. The equations serve as an example 
of the Navier-Stokes equations, which are the basic equations for solving the flow field in tidal 
rivers, bays and estuaries, and also in atmospheric models. 

In recent years numerous simulation models have been applied to problems in oceanography 
and environmental science, especially to the modelling of pollution in waters and the atmosphere. 
Many of these problems involve the incorporation of curving coastlines, islands or complicated 
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bottom topography while the solution is most needed near the boundaries (e.g. storm surge 
modelling, modelling of thermal plumes in tidal rivers, harbour modelling etc.). In particular, 
when the flow field and pollutant dispersal in harbour areas are simulated (e.g. the harbours of 
Bremen or Hamburg), methods are necessary to efficiently describe these complicated regions 
without the use of an excessive number of grid points, which is demanded by Cartesian models. 

Another important group of problems requiring curved boundaries are free surface problems, 
including the breaking of waves. 

The long used technique of approximating boundaries in a step fashion is not adequate for 
these problems,I and simulation models should be improved to reflect the advances in numerical 
grid generation. This technique becomes even more important for three-dimensional problems 
of irregular geometry. 

During the last decade substantial progress has been made in the solution of PDEs for curved 
boundaries, mainly due to the introduction of finite element the irregular grid 
finite-difference techniques by Thacker7s8 and the use of transformation methods, in particular 
the work of Thompson et ~ 1 . ' - ' ~  Using Thompson's method, where the solution domain is 
mapped onto a rectangle in the computational plane, the curvilinear co-ordinate system is 
constructed by elliptic differential operators (a Poisson equation is used for each curvilinear 
co-ordinate where the right-hand side of the equation is used for grid line ~ont ro l ) . '~  All calcula- 
tions are performed in the transformed plane. Since the solution area in this plane is a rectangle, 
the problem is reduced to the solution of the transformed equations on this rectangle, which is 
an advantage in comparison to the original problem, and substantially facilitates the computer 
programming. The metric coefficients, needed for the transformed equations, are calculated 
numerically from the resulting grid point distribution. This distribution can be obtained, for 
instance, from Thompson's TOMCAT code or from the improved version, WESCOR by 
Johnson and Thompson14 where a multi-connected region is mapped onto a multi-connected 
region. 

If, however, the solution area is very complex the mapping on a single rectangle often does 
not yield the desired grid line configuration; for instance if flow past a cylinder (2D) is considered, 
the mapping of the boundary of the doubly-connected solution area on the boundary of a single 
rectangle cannot result in a gridline pattern which resembles the pattern of the streamlines. The 
important idea for the solution of these problems is the use of composite grids, as implemented 
in the code of C01eman.l~ The domain of interest is subdivided into a set of connected charts 
(also called segments), which cover the physical area, forming a so-called atlas. Each chart then 
is mapped onto a rectangle (2D) or onto a box (3D). A 2D example is given in Figure 1. 

Either of the above mentioned codes can be used for the solution of the shallow water equations 
on an annular sheet of water bounded by concentric circles. For this problem an analytic solution 
exists, and the influence of slightly varying metric coefficients on the solution can be investigated. 
So far not much attention has been given to the numerical errors induced by the co-ordinate 
system and the transformation itself, since variable coefficients occur in the transformed equations. 
Two recently published papers by MastinI6 and Kerlick and Kloperi7 deal with this subject. 

The numerical solution involves two spatially staggered grids, one for the velocity components 
and the other for the surface elevation. Computations are initialized to normal modes of the 
basin and carried forward for a time approximately equal to fifty cycles of the normal mode. 

The subject of this paper is not grid generation, rather it is assumed that all metric coefficients, 
which occur in the transformed SWEs are known at each grid point. The emphasis of this 
presentation is on the solution of the transformed SWEs on complex solution domains, using 
a specified grid point distribution. Although the example presented is for an annular ring, the 
generation of the computational grid for more complicated geometries, as in Figure 1 ,  does not 
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Figure 1. This plot shows that much more complicated areas than the annular ring can be handled by boundary conformed 
co-ordinate systems. The solution domain shown is a part of the Hamburg Harbour area. The grid line distribution was 
generated using Coleman's idea of segmentation,'5 demonstrating thecapability ofmodelling regions with many segments. 
The solution domain is subdivided into a set of contiguous segments which are mapped onto rectangles. The transformed 

PDEs are then solved on these rectangles. Local refinement of the grid is easily possible on each segment 

pose any problem. If non-adaptive grids are used, grid generation and solution of governing 
equations are completely decoupled. 

SHALLOW WATER EQUATIONS 

We start with the linearized SWEs, that is, we assume small oscillations, i.e. h << H (see Figure 2). 

au ah 
- + g- - f u  = 0, at ax 
av ah 
- + g - + f u  =o, at ay  

ah au au 
at ax a y  
- + H- + H -  = 0, (3) 

where u and u have the dimensions of velocity, f denotes the Coriolis force and H is the 
constant still water depth (D = H). 

The above equations describe linear long waves in an inviscid rotating ocean. The Coriolis 
force is of the form f x u where f points in the direction of the axis of rotation. Equations (1)-(3) 
are solved for an annular sheet of water bounded by concentric circles. This problem has an 
analytic solution.18 For the concentric circles to represent solid walls, it is required that 



730 J. HAEUSER ET AL. 

free voter  sur focc 

x,y still water level 

bottom - 
h - surface elevation D - water depth 
H - stiil vaier  depth 

Figure 2. Co-ordinate system: h = surface elevation, D = water depth, N = still water depth 

components of the velocity normal to these walls vanish. For the analytic solution harmonic time 
dependence is assumed. In the following u, v and h depend only on spatial co-ordinates r,  8 but may 
be complex quantities. The final solution is obtained by multiplication with exp(iot) and taking the 
real part. For harmonic time dependence, the spatial part of the SWEs takes the form 

1 dh 
02- , f2  dr r d8 

u = --(io cos 0 + f sin 8) - --(io sin 0 - f cos 8) 

- ( io  sin 8 - ,f cos 8)  + 
d2h l d h  1 d2h 02- f 2  

h = 0. -++-+---- +-- 
dr2 r d r  r 2 d d 2  g H  

(4) 

For ,f equal to zero, we have ah/& = 0 (see equation (20)) and hence contour lines for surface 
elevation must be perpendicular to the boundaries. Using a separation ansatz in the spatial 
co-ordinates, h = R(r)@(8), the solution of (6) is described by (the most general solution would 
be a linear combination of Bessel and Neumann functions, but Neumann functions can be avoided, 
see below) 

h(r, 8, t )  = h,J,(kr)cos(ot + no). (7) 
Rotating the co-ordinate system by an angle 8, and using equations (4) and (9, the normal 
velocity component ufi is computed. The vanishing of this component leads to a condition for h, and 
when the solution for k, equation (7), is inserted, the boundary condition takes the form 

where k,r,(m = 1,2,. . .) denote the set of values satisfying the boundary condition, rc is the radius 
of the inner or outer circle, and prime denotes differentiation with respect to the product kr. 
Insertion of the Bessel function of order n, J,, into equation (6) leads to the well known dispersion 
relation: 

o2 = gHk2 + .f ’. (9) 
The integers n, m identify the normal mode where n is the number of radial nodes (i.e. 
nodes or zeros along a given value r = constant) and m describes the number of concentric circles 
where (i.e. in the radial direction) the elevation is zero. For .f = 0, one simply has the boundary 
condition Jh(kr) = 0. 
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We choose k,, = 1 and Y, = rl  (inner radius), Y, = y 2  (outer radius) such that equation (8) is 
satisfied. The dispersion relation then determines the frequency. With this choice for the 
description of the radial dependence, R(r), Neumann functions are not necessary. Only for n = 0 or 
f = 0 is the solution described by standing waves. For arbitrary f ,  the solution is described by 
progressive waves, (7). 

TRANSFORMATION O F  THE SHALLOW WATER EQUATIONS TO 
CURVILINEAR CO-ORDINATE SYSTEMS 

Since the irregularly shaped solution area in the physical plane (x, y) is mapped onto a rectangle 
in the transformed plane ((,y), the governing equations must be transformed too. In general, 
the transformed equations have variable coefficients, but the solution area has been reduced to 
a rectangle, spanned by an equidistant mesh. The solution of the transformed equations on a 
rectangle, however, is much easier than the original problem. Boundary conditions have also to 
be transformed. 

Transforming first derivatives, one can obtain a non-conservative or conservative form. It was 
found that a conservative form leads to larger numerical error if second derivatives are numerically 
not interchangeable (see Figure 8). Hence the non-conservative form was used for our calculations: 

Using equations (10)- and (1 1) the transformed SWEs read 

where is the square root of the determinant of the metric tensor (not to be confused with g 
which is the acceleration due to the earth is gravity). Recalling the definition of the metric 
coefficients for co-ordinates xm = xm( [ j ) ,  

dx" dx" g. =;- 
I k  d t '  d t k '  (1 5 )  

we find the relationship between the metric coefficients gik and the partial derivatives dx"'/drk. 
In our case, we obtain 

For the example of the annular ring (polar co-ordinates), the metric coefficients can be 
determined analytically, that is 

g1 = 1; g12 = g2! = 0; g22 = r2; Js = r. (17) 
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On the boundary, we separate the velocity into tangential and normal components: 

au, a h  -++-- fu ;=O,  
at avi 

- + y 7 +  f U d  = 0. 
at at 

au; ah 

As uri = 0, we obtain from equations (18) and (19) 

dh 
dn 

9,- fu;=O, 

Equation (21) determines the tangential velocity, whereas equation (1 8) could be used to compute 
the surface elevation h at the boundary. Since in the discrete approximation no h-grid points 
lie on solid boundaries, this expression is not needed. Neglecting the Coriolis force, equation 
(20) shows that all contour lines for h must be perpendicular to solid boundaries. 

If the boundary of the solution area is described by a curve in parameter representation (e.g. 
spline), r = (x(q),y(q)), where q is the curve parameter, we find for the unit tangent vector 

Z = (x2 + ~')-~'~(i, 9 )  =:( - sin cp,cos cp) (22) 
where the dot denotes differentiation with respect to q. Hence we have 

i 
sin cp = - 

J ( i 2  + $ 2 ) '  

ii 
cos cp = + J 

J ( i 2  + $2'  

As we are interested only in the Cartesian velocity components u and u, the tangential velocity, 
(19), is separated with respect to these components: 

du dh au a h  
at a€ at at 
- - y-sin cp = 0; -- + y--cos cp = 0. 

Using the relation 

dh a h  
-=  -sincp--+coscp- 
dh 
at dX dY 

results in the following equations for boundary points: 

au 
at 

au ah  
at 

For the transformation of equations (26) onto the computational plane the non-conservative 
form of the first derivatives (lo), is used. Inserting these expressions into equation (26), gives the 
final form of the equations valid for the upper and lower sides of the rectangle (in this simple 
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geometry), which form the solid boundary in the transformed plane: 

Let N and M be the number of points in 5 and v] directions, respectively, then the transformed 
velocity equations (13) and (14) are valid for 5 = l(1)N; v] = 2(1)M - 1 (for the ring geometry) 
whereas the equation for the surface elevation holds for all grid points. The equations derived 
from the boundary conditions, (22), hold for 5 = l(1)N; v] = 1; M .  Since we have an equidistant 
mesh in the transformed plane with grid spacings A5 = Av] = 1, the ranges of the co-ordinates ;4 
and v]  correspond to the number of grid points in each direction. No physical boundary conditions 
are specified along the re-entrant boundaries (resulting from the two sides of a branch cut and 
thus not physical boundaries) which form the left and right sides of the rectangle in the transformed 
plane. Rather we have the following correspondence between re-entrant grid points (periodic 
boundary conditions): values on 5 = N  correspond to those on 5= 1 and values on r = O  
correspond to those on 5 = N - 1 .  

NUMERICAL SCHEME FOR THE TRANSFORMED SHALLOW 
WATER EQUATIONS 

For the numerical solution of the system of coupled equations, (12)-(14), two staggered meshes 
are used; one for the components u, u and the other for h. The meshes are chosen such that 
velocity components are calculated on the boundary. No calculations have been performed 
where all three variables are computed at the same grid points. The staggered grids are depicted 
in Figure 3. The vertices at  the squares are taken as grid points for u and v,  marked by crosses, 
whereas the dots at the centres of the squares represent grid points for h. This grid is advantageous 
for strong Coriolis forces but allows decoupling' because interpolation is necessary to determine 
fluxes across cell sides. In general a marker-and-ceil (MAC) type grid should be preferred20 
with surface elevation defined at the cell centre and velocities defined at mid-points of cell sides. 
Since for this paper several examples with Coriolis coefficients were calculated, the MAC type 
grid was not used. No accuracy problems were observed with our staggered grid for the present 
calculations. 

Since the metric coefficients must be known at each vertex of a solid or dashed grid line, it 
is necessary that the boundary fitted grid, representing this feature, has (2N - 1 )  x (2M - 1 )  grid 

Figure 3. Crosses denote grid points for ti, u and dots indicate those for h 
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Figure 4. u: u and h have to be interpolated at points denoted by open circles 

points. In Figure 4 the two sets of indices for the staggered grids are shown, where i , j  denote 
positions for u, 7) and I ,  J denote those of h. 

In order to satisfy the zero normal flow condition for solid walls, the u and u grid points are 
placed on the lower and upper boundaries (Figure 3). 

For the numerical solution the resulting mathematical system of weakly coupled, ordinary 
differential equations is integrated in time by Euler’s method (or by some Runge-Kutta scheme”) 
limiting the time step by the phase velocity J ( g H ) .  If additional transport equations must be 
solved, flux correction techniques for general curvilinear co-ordinates could be used. 

The discrctized equations take the form 

1 
{ + Y q I , J C ( W i +  1.J - (uH)i,JI- x,r,.rC(vWi+ 1.J - (vH)i,.rI ~ dhh,,, - -____ 

d t  ( J 0 ) r . J  
- 

For the boundary conditions one obtains 

+ cos (pi, j( - xqi, jCh1.j - hr - 1 ,  jI + xgi. jChi., - h i , J  - 1 I )  1, (32) 
From equations (28)-- (32) it is seen that u, v and h values are needed at locations which are not 

grid points. For the continuity equation, velocity values are needed at points i + 1, J ;  i, J ;  I , j  + 1 
and I ,  j .  These values are obtained from linear interpolation in the transformed plane (in a general 
model this interpolation should be replaced by a weighted interpolation with the respective square 
roots of the metric coefficients): 

u i+ l , , ,=+(u i+ l , j+  u i + l . j + l ) ;  u t , j + t  = + ( u i , j + l  +vi+l,j+l). (33) 
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Since the partial derivatives xs, x,, y g ,  y g  and Jg are known on the fine grid (formed by both 
dashed and solid lines, see Figure 3), no interpolation is necessary for these terms. As H is a 
known function of x and y, all value of H can be calculated on the fine grid, prior to the 
beginning of the numerical calculations. For the momentum equations values for k are needed 
at points 1,j; I - 1,j; i , j  and i, J - 1. Again linear interpolation is used. For solid boundaries, 
values for h are not needed, since a staggered grid and an explicit time integration scheme for 
the surface elevation are used. 

Let k,  1 denote the indices of a quantity on the fine grid (dimension 2N - 1 x 2M - l), the 
relation between the indices of the staggered grids and those of the fine mesh are given by 

k=21;  1 = 2 J ;  k = 2 i - 1 ;  1=2j -1 .  (34) 

If, for example, (yJi+ 
of the fine grid is used. Furthermore, because of the re-entrant boundaries, fictitious grid points 
for elevation h are needed for I = 0 and I = N .  

has to be determined for the continuity equation, the element ( y J z i +  

NUMERICAL RESULTS FOR NORMAL MODE SIMULATIONS 

Numerical results for constant still water depth H are depicted in Figures 5-8. For actual compu- 
tations, the finite difference scheme of the previous section with the non-conservative discretization 
for the first derivative was used. Comparisons of the non-conservative and conservative schemes 
showed that the latter gave rise to an oscillatory numerical error, which was substantially larger 
than the one obtained from the non-conservative scheme (Figure 8). When the conservative 
scheme is employed in the case of a plane surface ( h  = constant), the time derivative for, e.g., u, 
is different from zero, owing to the existence of the term (gH/, /y)h((y , )g  - (yr),), because second 

COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION OF SUE 
ERID(60X241;SRSCTU) nODE~N..O,RI-3.B3,R2-10.17;POINTI1.121 

CFILCUWIION TIM:lO PERIODS; TIMSTEP PRW l/SORT(EUH) 

NUfiBER OF TINSTEPS 
(4 



736 J. HAEUSER ET AL. 

COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION OF SWE 
cRID(6OX211tSELCCTED llOOE:N-1,R1-5.55,R2-ll.71;POINTll,l2) 

Cfil.CULATION TIBE:lO PCRIOOSI TIRESTEP PROP l/SMIT(EwHl ... 

i.0 
NURBER OF Tll?CSTEPS 

(b) 

COI'IPARISON O f  ANALYTICAL AND NUHERICAL SOLUTION O f  SUE 
ORID(GOX241 t SELECtED nOOE rN-3,R1-8.02,R2-11.59 JPOINT I 1,12 1 

Cf%WLATlON TJrl€,?lO PERIODS$ TfnMEP PROP l/SORTtO*Hl 
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COflPARISON OF ANALYTICAL AND NUflERICAL SOLUTION OF SUE 
6RIOtWX2t);SELECTW ~ODE:N-I,Rl-9.28,R2-1S.96;POINTt1,121 
CAlCULRTlON T1M:lO PCRIOOS; TIESTEP PROP l/SaRT(E*HI 

Figure 5. Figures (a)-(e) show a comparison between analytic and numerical solutions of surface elevation for modes n = 0 
to n = 4 at grid point I = 1, J = 12. Since higher modes (increasing nj exhibit more structure, the number of grid points per 

wavelength is reduced, and hence deviations from the analytic solution occur at earlier times 
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COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION OF SWE 
GRJD~lSX2tl;SELECTEO ~DE:N-l,R1-5.33,R2-11.7l;POINfl1,12J 
CRLCULATION TIflErlO PERIODS; TItlESfEP PRW l/SDRT[W) 

P 

Figure 6. If the number ofgrid points is reduced to 15 x 24, the solution for n = 1 shows the same behaviour as for n = 4 on 
a 60 x 24 grid, indicating that accuracy depends on the number of grid points per wavelength 

COMPARISON OF FINALYTICAL AND NUMERICAL SOLUTION O f  SWE 
GRID[M)X2+1 ;SELECTED ~D&IN-O,R~-~.~~.R~-~O.~~;WINI~ 1,121 

CaCULRTION TItlE110 PERIODS; TIPUSTEP PRDP l/SORTICwHI rn 
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COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION OF SNE 
GRID(9QX12l;SELECTED RODE:N-4,R1-9.28,R2-15.96;POINT(1,61 

METRIC COEFFICIENTS FROM INMESH 

.o 

Figures 7(a) 7(b) The u-velocity (same with u-component) is depicted for modes n = 0 and ti  = 4. For modes n = 1 to n = 3 the 
same behaviour as for surface elevation is observed. The u-component at grid point (1, 12) is equal to zero 

NUNERICRL ERROR IN SOLUTION OF THE SHRLLOW WRTER EOURTIONS 
GRID[ 60x21) ;H-GONS?-lO.;V-VPHI ;POIMf l , l  f 

CRLCULRTION T1nE:lO PERIODS; R1-9.28,R2-15.94 

Figure 8. Numerical errors for constant water depth D, resulting from both conservative and non-conservative 
discretizations of first derivatives are shown. The conservative scheme exhibits much larger and oscillating numerical errors 
when compared with those of the non-conservative discretization. The numerical error for the conservative scheme is 

proportional to surface elevation h whereas the error for the non-conservative one is independent of h 



740 J. HAEUSER ET AL. 

COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION OF SHE 
GRI0~88r881;S&L~C.R00E:N-4,R1-9.28,R2-15.96;P01NT~71,441 

X,Y-CRRTESIRN COOROINRTES; CORIOLIS-1.0 

1.0 

COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION OF SWE 
GRIO~88*88l;SELEC.MOOE:N-4,R1-9.28,R2-lS.96iPOINT~7l,44~ 

0 X,Y-CRRTESIRN COOROINRTES; CORIOLIS-1.0 
0 

Figures 9(a) and 9(b). Surface elevation and u-velocity component as obtained from an x-y Cartesian grid model at a grid 
point near the inner radius of the annular ring are depicted. In this model the boundary was represented in a step fashion 
resulting in a very fine grid (88 x 88) to sufficiently resolve geometrical details. This corresponds to some 170 points along 
the inner circumference and to about 300 points for the outer circumference. In general, the solution produced by this model 

was good except at grid points near boundaries where the calculations of the flow field were inaccurate 
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COMPARISON OF R N R L Y T I ~ ~ L  AND NUMERICAL SOLUTION OF SWE 
GRID~88~88li5ELEC.MOOE~N~4,R1~9~28,R2-1S.~6~FOINT~8S,44~ 

X,Y-CRRTESIRN CDORDINRTE5j CDRIOIIS-1.0 

.o 100.0 200.0 300.0 400.0 500.0 600.0 700.0 
NUMBER OF TIMESTEPS 

(4 
COMPA~ISON OF ANALYTICAL A N 0  NUMERICAL SOLUTION OF SWE 

GRIO188*88l;SELEC.MODE:N-4,Rl-9.28,R2-15.96;PO~NT~8S,44l 
X,Y-CRRTESIRN COOROINRTES; CORIOLIS-1.0 

1.0 

.O 

Figures lqa )  and (b). Surface elevation and u-velocity component as obtained from an x-y Cartesian grid model at a grid 
point near the outer radius of the annular ring are shown. Again, inaccuracies of the surface elevation and the velcoity are 
produced. This may lead to gross errors in the calcufation of passive transport in the vicinity of curved boundaries (e.g. 
thermal piume calculation in harbour areas, see Figure 1). Owing to the large number of grid points, the computation time 

of this model is a factor three higher than for the BFG model 
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derivatives do not cancel numerically. Hence, this term provides a numerical source of energy. 
Therefore, the non-conservative form was preferred. 

In general, numerical simulations were performed on a 60 x 24 grid; i.e. 60 grid points in the 
azimuthal and 24 in the radial direction were used, which demanded a boundary fitted grid of 
size 119 x 47. It was, however, found that the same accuracy (or better) was obtained with a 
90 x 12 grid or even a 60 x 12 grid was sufficient. It can be shown, and was confirmed by 
computations, that the accuracy of the numerical solution only depends on the number of grid 
points per wavelength. 

The influence of this number on the accuracy is demonstrated in Figure 6, where a 15 x 24 
grid was used for n = 1, which corresponds to a 60 x 24 grid for mode n = 4. Since the frequency, 
that is the number of zeros in azimuthal direction, is proportional to n, the number of grid 
points per wavelength diminishes with increasing radial mode number, and hence accuracy is 
reduced. Velocities are depicted in Figure 7(a) and 7(b), and show the same accuracy behaviour 
as surface elevation. 

In most cases it will be advantageous to obtain solutions in contravariant components (i.e. 
cs and u4)  in order to locally rotate the co-ordinate system in the flow direction and hence reduce 
numerical diffusion. Moreover, the formulation of boundary conditions is facilitated. For the 
present case, however, this is an advantage for n = 0 only. Since a stability analysis for the 
transformed shallow water equations has not yet been performed, the finite difference contours 
of a circular basin for a uniform triangular grid were used' to estimate the number of necessary 
grid points in the t and 11 directions. Using Thacker's results' shows that frequencies are well 
approximated for waves larger than four grid spacings; i.e. k A  < 4 2 .  Since in the physical plane 
grid spacings vary in the r-direction, this demands that N > 4R, and M > 2/nR, where R, is 
the mean of the inner and outer radii of the circular ring basin. This is a lower limit since the 
above stability condition is reached only for the maximal time step. Since an irregular grid 
is used, no optimal time step exists. Hence the number of grid points is doubled in each direction. 
If a basin with parabolic depth profile or any other profile is simulated, an optimal time step 
does not exist for a regular grid either. Since in practical applications depth variations occur, 
the use of regular grids does not give an advantage. In Figures 9 and 10 the results of an x-y 
Cartesian grid model are presented. In this model the boundary was approximated as a step 
function, and a rectangular uniform grid was used. The number of grid points was 88 x 88 in 
order to resolve geometrical details. In general, the solution produced by this model was good, 
except at grid points near the inner and outer circumferences where the flow field was inaccurately 
modelled. Because of the high number of grid points, computer time was a factor three higher 
than for the BFG model. Furthermore, it is assumed that the accuracy of the Cartesian grid 
model deteriorates when variable coefficients ( H  not constant) are used. For the BFG model 
variable coefficients are produced by varying metric components even if H is constant. 

CONCLUSIONS AND OUTLOOK 

The solution of the SWEs on a circular ring provides a particularly good basis for the testing 
of boundary fitted co-ordinate systems, since comparisons with the analytic solution for both 
velocity components and surface elevation are possible. Moreover, frequencies of the normal 
mode simulations can be checked too. 

All calculations were performed on a uniform grid in the transformed plane, and no instabilities 
(in one example some 1000 periods were calculated) were found which could have been expected 
from the variable coefficients generated by the transformation. The numerical scheme remained 
stable even for Coriolis parameter f = 1. 
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Analytic solutions also exist for a circular ring basin with parabolic depth profile H = 
H,( 1 - r 2 / R 2 ) .  N o  calculations have been performed for this case. Furthermore, the influence 
of grid line concentration on accuracy and stability has not been investigated. Several other 
numerical schemes are possible, e.g. if transport equations are solved it may be advantageous 
to resort to flux-corrected transport techniques. 

The approximation of the first spatial derivatives is of great importance since the use of a 
conservative form may lead to inaccuracies, because second derivatives do not cancel in general. 
Even for constant h, terms proportional to h(y,, - yo<) etc. occur, which provide a numerical 
source of energy. Most likely these terms will not cause stability problems in parabolic equations 
where sufficient damping exists, but may cause oscillations in hyperbolic systems. However, the 
accuracy of the solution will be affected in both cases. 

It has been demonstrated that BFGs are useful for problems with curving boundaries, which 
occur in many cases of practical interest. Further investigations are necessary concerning the 
stability of the transformed equations. Particular attention should be given to the influence of 
the co-ordinate system used for the numerical simulation. In this paper the same results were 
obtained for metric coefficients determined from polar co-ordinates and for those determined 
from a grid point distribution resulting from the solution of Laplace’s equation. Problems with 
known analytic solutions (linear and non-linear) on complex solution domains will be most 
useful for the comparison with numerical results, e.g. Reference 22. 

In addition, numerical results from a conventional model (x, y-Cartesian co-ordinates) were 
presented where the boundary is represented in a step fashion. Although a much finer grid is 
used (88 x 88), there a grid points near the inner and outer radii of the annular ring where, in 
contrast to the behaviour of the solution in the interior, surface elevation and velocity elevation 
are not accurately approximated. This gives a hint that in situations where simulations near 
curved boundaries are important (e.g. harbour area (see Figure 1) or for complicated bottom 
topography) such a model may lead to incorrect results. 

Furthermore, the computation time of the BFG model was only one third of that of the 
Cartesian grid model, showing that there are cases were BFG models are more economical. It 
is expected that in cases of practical applications the accuracy of the Cartesian grid model will 
decrease further, since in the example of the annular ring only constant coefficients (constant 
depth) were used, whereas in the BFG model variable coefficients, due to the transformation, 
were already employed. 
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